home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
AmigActive 2
/
AACD 2.iso
/
AACD
/
Programming
/
fpc
/
inc
/
lowmath.inc
< prev
next >
Wrap
Text File
|
1998-09-21
|
39KB
|
949 lines
{
$Id: lowmath.inc,v 1.3 1998/07/01 14:28:32 carl Exp $
This file is part of the Free Pascal run time library.
Copyright (c) 1993,97 by Carl-Eric Codere,
member of the Free Pascal development team
See the file COPYING.FPC, included in this distribution,
for details about the copyright.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
**********************************************************************}
{*************************************************************************}
{ lowmath.inc }
{ Ported to FPK-Pascal by Carl Eric Codere }
{ Terms of use: This source code is freeware. }
{*************************************************************************}
{ This inc. implements low-level mathemtical routines for the motorola }
{ 68000 family of processors. }
{*************************************************************************}
{ single floating point routines taken from GCC 2.5.2 Atari compiler }
{ library source. }
{ Original credits: }
{ written by Kai-Uwe Bloem (I5110401@dbstu1.bitnet). }
{ Based on a 80x86 floating point packet from comp.os.minix, }
{ written by P.Housel }
{ Patched by Olaf Flebbe (flebbe@tat.physik.uni-tuebingen.de) }
{ Revision by michal 05-93 (ntomczak@vm.ucs.ualberta.ca) }
{*************************************************************************}
{--------------------------------------------------------------------}
{ LEFT TO DO: }
{ o Add support for FPU if present. }
{ o Verify if single comparison works in all cases. }
{ o Add support for NANs in SINGLE_CMP }
{ o Add comp (80-bit) multiplication,addition,substract,division, }
{ shift. }
{ o Add stack checking for the routines which use the stack. }
{ (This will probably have to be done in the code generator). }
{--------------------------------------------------------------------}
Procedure Single_Norm;Assembler;
{--------------------------------------------}
{ Low-level routine to normalize single e }
{ IEEE floating point values. Never called }
{ directly. }
{ On Exit: }
{ d0 = result. }
{ Registers destroyed: d0,d1 }
{--------------------------------------------}
Asm
tst.l d4 { rounding and u.mant == 0 ? }
bne @normlab1
tst.b d1
beq @retzok
@normlab1:
clr.b d2 { "sticky byte" }
@normlab3:
move.l #$ff000000,d5
@normlab4:
tst.w d0 { divide (shift) }
ble @normlab2 { denormalized number }
move.l d4,d3
and.l d5,d3 { or until no bits above 23 }
beq @normlab5
@normlab2:
addq.w #1,d0 { increment exponent }
lsr.l #1,d4
or.b d1,d2 { set "sticky" }
roxr.b #1,d1 { shift into rounding bits }
bra @normlab4
@normlab5:
and.b #1,d2
or.b d2,d1 { make least sig bit "sticky" }
asr.l #1,d5 { #0xff800000 -> d5 }
@normlab6:
move.l d4,d3 { multiply (shift) until }
and.l d5,d3 { one in "implied" position }
bne @normlab7
subq.w #1,d0 { decrement exponent }
beq @normlab7 { too small. store as denormalized number }
add.b d1,d1 { some doubt about this one * }
addx.l d4,d4
bra @normlab6
@normlab7:
tst.b d1 { check rounding bits }
bge @normlab9 { round down - no action neccessary }
neg.b d1
bvc @normlab8 { round up }
move.w d4,d1 { tie case - round to even }
{ dont need rounding bits any more }
and.w #1,d1 { check if even }
beq @normlab9 { mantissa is even - no action necessary }
{ fall through }
@normlab8:
clr.w d1 { zero rounding bits }
add.l #1,d4
tst.w d0
bne @normlab10 { renormalize if number was denormalized }
add.w #1,d0 { correct exponent for denormalized numbers }
bra @normlab3
@normlab10:
move.l d4,d3 { check for rounding overflow }
asl.l #1,d5 { #0xff000000 -> d5 }
and.l d5,d3
bne @normlab4 { go back and renormalize }
@normlab9:
tst.l d4 { check if normalization caused an underflow }
beq @retz
tst.w d0 { check for exponent overflow or underflow }
blt @retz
cmp.w #255,d0
bge @oflow
lsl.w #8,d0 { re-position exponent - one bit too high }
lsl.w #1,d2 { get X bit }
roxr.w #1,d0 { shift it into sign position }
swap d0 { map to upper word }
clr.w d0
and.l #$7fffff,d4 { top mantissa bits }
or.l d4,d0 { insert exponent and sign }
movem.l (sp)+,d2-d5
rts
@retz:
{ handling underflow should be done here... }
{ by default simply return 0 as retzok... }
@retzok:
moveq.l #0,d0
lsl.w #1,d2
roxr.l #1,d0 { sign of 0 is the same as of d2 }
movem.l (sp)+,d2-d5
rts
@oflow:
move.l #$7f800000,d0 { +infinity as proposed by IEEE }
tst.w d2 { transfer sign }
bge @ofl_clear { (mjr++) }
bset #31,d0 { }
@ofl_clear:
or.b #2,ccr { set overflow flag. }
movem.l (sp)+,d2-d5
rts
end;
Procedure Single_AddSub; Assembler;
{--------------------------------------------}
{ Low-level routine to add/subtract single }
{ IEEE floating point values. Never called }
{ directly. }
{ On Exit: }
{ d0 = result -- from normalize routine }
{ Flags : V set if overflow. }
{ on underflow d0 = 0 }
{ Registers destroyed: d0,d1 }
{--------------------------------------------}
Asm
{--------------------------------------------}
{ On Entry: }
{ d1-d0 = single values to subtract. }
{--------------------------------------------}
XDEF SINGLE_SUB
eor.l #$80000000,d0 { reverse sign of v }
{--------------------------------------------}
{ On Entry: }
{ d0, d1 = single values to add. }
{--------------------------------------------}
XDEF SINGLE_ADD
movem.l d2-d5,-(sp) { save registers }
move.l d0,d4 { d4 = d0 = v }
move.l d1,d5 { d5 = d1 = u }
move.l #$7fffff,d3
move.l d5,d0 { d0 = u.exp }
move.l d5,d2 { d2.h = u.sign }
swap d0
move.w d0,d2 { d2 = u.sign }
and.l d3,d5 { remove exponent from u.mantissa }
move.l d4,d1 { d1 = v.exp }
and.l d3,d4 { remove exponent from v.mantissa }
swap d1
eor.w d1,d2 { d2 = u.sign ^ v.sign (in bit 15)}
clr.b d2 { we will use the lowest byte as a flag }
moveq.l #15,d3
bclr d3,d1 { kill sign bit u.exp }
bclr d3,d0 { kill sign bit u.exp }
btst d3,d2 { same sign for u and v? }
beq @slabel1
cmp.l d0,d1 { different signs - maybe x - x ? }
seq d2 { set 'cancellation' flag }
@slabel1:
lsr.w #7,d0 { keep here exponents only }
lsr.w #7,d1
{--------------------------------------------------------------------}
{ Now perform testing of NaN and infinities }
{--------------------------------------------------------------------}
moveq.l #-1,d3
cmp.b d3,d0
beq @alabel1
cmp.b d3,d1
bne @nospec
bra @alabel2
{--------------------------------------------------------------------}
{ u is special. }
{--------------------------------------------------------------------}
@alabel1:
tst.b d2
bne @retnan { cancellation of specials -> NaN }
tst.l d5
bne @retnan { arith with Nan gives always NaN }
addq.w #4,a0 { here is an infinity }
cmp.b d3,d1
bne @alabel3 { skip check for NaN if v not special }
{--------------------------------------------------------------------}
{ v is special. }
{--------------------------------------------------------------------}
@alabel2:
tst.l d4
bne @retnan
@alabel3:
move.l (a0),d0
bra @return
{--------------------------------------------------------------------}
{ Return a quiet nan }
{--------------------------------------------------------------------}
@retnan:
moveq.l #-1,d0
lsr.l #1,d0 { 0x7fffffff -> d0 }
bra @return
{ Ok, no inifinty or NaN involved.. }
@nospec:
tst.b d2
beq @alabel4
moveq.l #0,d0 { x - x hence we always return +0 }
@return:
movem.l (sp)+,d2-d5
rts
@alabel4:
moveq.l #23,d3
bset d3,d5 { restore implied leading "1" }
tst.w d0 { check for zero exponent - no leading "1" }
bne @alabel5
bclr d3,d5 { remove it }
addq.w #1,d0 { "normalize" exponent }
@alabel5:
bset d3,d4 { restore implied leading "1" }
tst.w d1 { check for zero exponent - no leading "1" }
bne @alabel6
bclr d3,d4 { remove it }
addq.w #1,d1 { "normalize" exponent }
@alabel6:
moveq.l #0,d3 { (put initial zero rounding bits in d3) }
neg.w d1 { d1 = u.exp - v.exp }
add.w d0,d1
beq @alabel8 { exponents are equal - no shifting neccessary }
bgt @alabel7 { not equal but no exchange neccessary }
exg d4,d5 { exchange u and v }
sub.w d1,d0 { d0 = u.exp - (u.exp - v.exp) = v.exp }
neg.w d1
tst.w d2 { d2.h = u.sign ^ (u.sign ^ v.sign) = v.sign }
bpl @alabel7
bchg #31,d2
@alabel7:
cmp.w #26,d1 { is u so much bigger that v is not }
bge @alabel9 { significant ? }
{--------------------------------------------------------------------}
{ shift mantissa left two digits, to allow cancellation of }
{ most significant digit, while gaining an additional digit for }
{ rounding. }
{--------------------------------------------------------------------}
moveq.l #1,d3
@alabel10:
add.l d5,d5
subq.w #1,d0 { decrement exponent }
subq.w #1,d1 { done shifting altogether ? }
dbeq d3,@alabel10 { loop if still can shift u.mant more }
moveq.l #0,d3
cmp.w #16,d1 { see if fast rotate possible }
blt @alabel11
or.w d4,d3 { set rounding bits }
clr.w d4
swap d4
subq.w #8,d1
subq.w #8,d1
bra @alabel11
@alabel12:
move.b d4,d2
and.b #1,d2
or.b d2,d3
lsr.l #1,d4 { shift v.mant right the rest of the way }
@alabel11:
dbra d1,@alabel12 { loop }
@alabel8:
tst.w d2 { are the signs equal ? }
bpl @alabel13 { yes, no negate necessary }
tst.w d3 { negate rounding bits and v.mant }
beq @alabel14
addq.l #1,d4
@alabel14:
neg.l d4
@alabel13:
add.l d4,d5 { u.mant = u.mant + v.mant }
bcs @alabel9 { needn not negate }
tst.w d2 { opposite signs ? }
bpl @alabel9 { do not need to negate result }
neg.l d5
not.l d2 { switch sign }
@alabel9:
move.l d5,d4 { move result for normalization }
clr.l d1
tst.l d3
beq @alabel15
moveq.l #-1,d1
@alabel15:
swap d2 { put sign into d2 (exponent is in d0) }
jmp SINGLE_NORM { leave registers on stack for norm_sf }
end;
Procedure Single_Mul;Assembler;
{--------------------------------------------}
{ Low-level routine to multiply two single }
{ IEEE floating point values. Never called }
{ directly. }
{ Om Entry: }
{ d0,d1 = values to multiply }
{ On Exit: }
{ d0 = result. }
{ Registers destroyed: d0,d1 }
{ stack space used (and restored): 8 bytes. }
{--------------------------------------------}
Asm
XDEF SINGLE_MUL
movem.l d2-d5,-(sp)
move.l d0,d4 { d4 = v }
move.l d1,d5 { d5 = u }
move.l #$7fffff,d3
move.l d5,d0 { d0 = u.exp }
and.l d3,d5 { remove exponent from u.mantissa }
swap d0
move.w d0,d2 { d2 = u.sign }
move.l d4,d1 { d1 = v.exp }
and.l d3,d4 { remove exponent from v.mantissa }
swap d1
eor.w d1,d2 { d2 = u.sign ^ v.sign (in bit 15)}
moveq.l #15,d3
bclr d3,d0 { kill sign bit }
bclr d3,d1 { kill sign bit }
tst.l d0 { test if one of factors is 0 }
beq @mlabel1
tst.l d1
@mlabel1:
seq d2 { 'one of factors is 0' flag in the lowest byte }
lsr.w #7,d0 { keep here exponents only }
lsr.w #7,d1
{--------------------------------------------------------------------}
{ Now perform testing of NaN and infinities }
{--------------------------------------------------------------------}
moveq.l #-1,d3
cmp.b d3,d0
beq @mlabel2
cmp.b d3,d1
bne @mnospec
bra @mlabel3
{--------------------------------------------------------------------}
{ first operand is special }
{--------------------------------------------------------------------}
@mlabel2:
tst.l d5 { is it NaN? }
bne @mretnan
@mlabel3:
tst.b d2 { 0 times special or special times 0 ? }
bne @mretnan { yes -> NaN }
cmp.b d3,d1 { is the other special ? }
beq @mlabel4 { maybe it is NaN }
{--------------------------------------------------------------------}
{ Return infiny with correct sign }
{--------------------------------------------------------------------}
@mretinf:
move.l #$ff000000,d0 { we will return #0xff800000 or #0x7f800000 }
lsl.w #1,d2
roxr.l #1,d0 { shift in high bit as given by d2 }
@mreturn:
movem.l (sp)+,d2-d5
rts
{--------------------------------------------------------------------}
{ v is special. }
{--------------------------------------------------------------------}
@mlabel4:
tst.l d4 { is this NaN? }
beq @mretinf { we know that the other is not zero }
@mretnan:
moveq.l #-1,d0
lsr.l #1,d0 { 0x7fffffff -> d0 }
bra @mreturn
{--------------------------------------------------------------------}
{ End of NaN and Inf }
{--------------------------------------------------------------------}
@mnospec:
tst.b d2 { not needed - but we can waste two instr. }
bne @mretzz { return signed 0 if one of factors is 0 }
moveq.l #23,d3
bset d3,d5 { restore implied leading "1" }
subq.w #8,sp { multiplication accumulator }
tst.w d0 { check for zero exponent - no leading "1" }
bne @mlabel5
bclr d3,d5 { remove it }
addq.w #1,d0 { "normalize" exponent }
@mlabel5:
tst.l d5
beq @mretz { multiplying zero }
moveq.l #23,d3
bset d3,d4 { restore implied leading "1" }
tst.w d1 { check for zero exponent - no leading "1" }
bne @mlabel6
bclr d3,d4 { remove it }
addq.w #1,d1 { "normalize" exponent }
@mlabel6:
tst.l d4
beq @mretz { multiply by zero }
add.w d1,d0 { add exponents, }
sub.w #BIAS4+16-8,d0 { remove excess bias, acnt for repositioning }
clr.l (sp) { initialize 64-bit product to zero }
clr.l 4(sp)
{--------------------------------------------------------------------}
{ see Knuth, Seminumerical Algorithms, section 4.3. algorithm M }
{--------------------------------------------------------------------}
move.w d4,d3
mulu.w d5,d3 { mulitply with bigit from multiplier }
move.l d3,4(sp) { store into result }
move.l d4,d3
swap d3
mulu.w d5,d3
add.l d3,2(sp) { add to result }
swap d5 { [TOP 8 BITS SHOULD BE ZERO !] }
move.w d4,d3
mulu.w d5,d3 { mulitply with bigit from multiplier }
add.l d3,2(sp) { store into result (no carry can occur here) }
move.l d4,d3
swap d3
mulu.w d5,d3
add.l d3,(sp) { add to result }
{ [TOP 16 BITS SHOULD BE ZERO !] }
movem.l 2(sp),d4-d5 { get the 48 valid mantissa bits }
clr.w d5 { (pad to 64) }
move.l #$0000ffff,d3
@mlabel7:
cmp.l d3,d4 { multiply (shift) until }
bhi @mlabel8 { 1 in upper 16 result bits }
cmp.w #9,d0 { give up for denormalized numbers }
ble @mlabel8
swap d4 { (we''re getting here only when multiplying }
swap d5 { with a denormalized number; there''s an }
move.w d5,d4 { eventual loss of 4 bits in the rounding }
clr.w d5 { byte -- what a pity 8-) }
subq.w #8,d0 { decrement exponent }
subq.w #8,d0
bra @mlabel7
@mlabel8:
move.l d5,d1 { get rounding bits }
rol.l #8,d1
move.l d1,d3 { see if sticky bit should be set }
and.l #$ffffff00,d3
beq @mlabel9
or.b #1,d1 { set "sticky bit" if any low-order set }
@mlabel9:
addq.w #8,sp { remove accumulator from stack }
jmp SINGLE_NORM{ (result in d4) }
@mretz:
addq.w #8,sp { release accumulator space }
@mretzz:
moveq.l #0,d0 { save zero as result }
lsl.w #1,d2 { and set it sign as for d2 }
roxr.l #1,d0
movem.l (sp)+,d2-d5
rts { no normalizing neccessary }
end;
Procedure Single_Div;Assembler;
{--------------------------------------------}
{ Low-level routine to dividr two single }
{ IEEE floating point values. Never called }
{ directly. }
{ Om Entry: }
{ d1/d0 = u/v = operation to perform. }
{ On Exit: }
{ d0 = result. }
{ Registers destroyed: d0,d1 }
{ stack space used (and restored): 8 bytes. }
{--------------------------------------------}
ASM
XDEF SINGLE_DIV
{ u = d1 = dividend }
{ v = d0 = divisor }
tst.l d0 { check if divisor is 0 }
bne @dno_exception
move.l #$7f800000,d0
btst #31,d1 { transfer sign of dividend }
beq @dclear
bset #31,d0
@dclear:
rts
@dno_exception:
move.l d1,d4 { d4 = u, d5 = v }
move.l d0,d5
movem.l d2-d5,-(sp) { save registers }
move.l #$7fffff,d3
move.l d4,d0 { d0 = u.exp }
and.l d3,d4 { remove exponent from u.mantissa }
swap d0
move.w d0,d2 { d2 = u.sign }
move.l d5,d1 { d1 = v.exp }
and.l d3,d5 { remove exponent from v.mantissa }
swap d1
eor.w d1,d2 { d2 = u.sign ^ v.sign (in bit 15) }
moveq.l #15,d3
bclr d3,d0 { kill sign bit }
bclr d3,d1 { kill sign bit }
lsr.w #7,d0
lsr.w #7,d1
moveq.l #-1,d3
cmp.b d3,d0 { comparison with #0xff }
beq @dlabel1 { u == NaN ;; u== Inf }
cmp.b d3,d1
beq @dlabel2 { v == NaN ;; v == Inf }
tst.b d0
bne @dlabel4 { u not zero nor denorm }
tst.l d4
beq @dlabel3 { 0/ ? }
@dlabel4:
tst.w d1
bne @dnospec
tst.l d5
bne @dnospec
bra @dretinf { x/0 -> +/- Inf }
@dlabel1:
tst.l d4 { u == NaN ? }
bne @dretnan { NaN/ x }
cmp.b d3,d1
beq @dretnan { Inf/Inf or Inf/NaN }
{ bra dretinf ; Inf/x ; x != Inf && x != NaN }
{--------------------------------------------------------------------}
{ Return infinity with correct sign. }
{--------------------------------------------------------------------}
@dretinf:
move.l #$ff000000,d0
lsl.w #1,d2
roxr.l #1,d0 { shift in high bit as given by d2 }
@dreturn:
movem.l (sp)+,d2-d5
rts
@dlabel2:
tst.l d5
bne @dretnan { x/NaN }
{ bra dretzero ; x/Inf -> +/- 0 }
{--------------------------------------------------------------------}
{ Return correct signed zero. }
{--------------------------------------------------------------------}
@dretzero:
moveq.l #0,d0 { zero destination }
lsl.w #1,d2 { set X bit accordingly }
roxr.l #1,d0
bra @dreturn
@dlabel3:
tst.w d1
bne @dretzero { 0/x ->+/- 0 }
tst.l d4
bne @dretzero { 0/x }
{ bra dretnan 0/0 }
{--------------------------------------------------------------------}
{ Return NotANumber }
{--------------------------------------------------------------------}
@dretnan:
move.l d3,d0 { d3 contains 0xffffffff }
lsr.l #1,d0
bra @dreturn
{--------------------------------------------------------------------}
{ End of Special Handling }
{--------------------------------------------------------------------}
@dnospec:
moveq.l #23,d3
bset d3,d4 { restore implied leading "1" }
tst.w d0 { check for zero exponent - no leading "1" }
bne @dlabel5
bclr d3,d4 { remove it }
add.w #1,d0 { "normalize" exponent }
@dlabel5:
tst.l d4
beq @dretzero { dividing zero }
bset d3,d5 { restore implied leading "1" }
tst.w d1 { check for zero exponent - no leading "1"}
bne @dlabel6
bclr d3,d5 { remove it }
add.w #1,d1 { "normalize" exponent }
@dlabel6:
sub.w d1,d0 { subtract exponents, }
add.w #BIAS4-8+1,d0 { add bias back in, account for shift }
add.w #34,d0 { add loop offset, +2 for extra rounding bits}
{ for denormalized numbers (2 implied by dbra)}
move.w #27,d1 { bit number for "implied" pos (+4 for rounding)}
moveq.l #-1,d3 { zero quotient (for speed a one''s complement) }
sub.l d5,d4 { initial subtraction, u = u - v }
@dlabel7:
btst d1,d3 { divide until 1 in implied position }
beq @dlabel9
add.l d4,d4
bcs @dlabel8 { if carry is set, add, else subtract }
addx.l d3,d3 { shift quotient and set bit zero }
sub.l d5,d4 { subtract, u = u - v }
dbra d0,@dlabel7 { give up if result is denormalized }
bra @dlabel9
@dlabel8:
addx.l d3,d3 { shift quotient and clear bit zero }
add.l d5,d4 { add (restore), u = u + v }
dbra d0,@dlabel7 { give up if result is denormalized }
@dlabel9:
subq.w #2,d0 { remove rounding offset for denormalized nums }
not.l d3 { invert quotient to get it right }
clr.l d1 { zero rounding bits }
tst.l d4 { check for exact result }
beq @dlabel10
moveq.l #-1,d1 { prevent tie case }
@dlabel10:
move.l d3,d4 { save quotient mantissa }
jmp SINGLE_NORM{ (registers on stack removed by norm_sf) }
end;
Procedure Single_Cmp; Assembler;
{--------------------------------------------}
{ Low-level routine to compare single two }
{ single point values.. }
{ Never called directly. }
{ On Entry: }
{ d1 and d0 Values to compare }
{ d0 = first operand }
{ On Exit: }
{ Flags according to result }
{ Registers destroyed: d0,d1 }
{--------------------------------------------}
Asm
XDEF SINGLE_CMP
tst.l d0 { check sign bit }
bpl @cmplab1
neg.l d0 { negate }
bchg #31,d0 { toggle sign bit }
@cmplab1:
tst.l d1 { check sign bit }
bpl @cmplab2
neg.l d1 { negate }
bchg #31,d1 { toggle sign bit }
@cmplab2:
cmp.l d0,d1 { compare... }
rts
end;
Procedure LongMul;Assembler;
{--------------------------------------------}
{ Low-level routine to multiply two signed }
{ 32-bit values. Never called directly. }
{ On entry: d1,d0 = 32-bit signed values to }
{ multiply. }
{ On Exit: }
{ d0 = result. }
{ Registers destroyed: d0,d1 }
{ stack space used and restored: 10 bytes }
{--------------------------------------------}
Asm
XDEF LONGMUL
cmp.b #2,Test68000 { Are we on a 68020+ cpu }
blt @Lmulcontinue
muls.l d1,d0 { yes, then directly mul... }
rts { return... result in d0 }
@Lmulcontinue:
move.l d2,a0 { save registers }
move.l d3,a1
move.l d0,-(sp)
move.l d1,-(sp)
movem.w (sp)+,d0-d3 { u = d0-d1, v = d2-d3 }
move.w d0,-(sp) { sign flag }
bpl @LMul1 { is u negative ? }
neg.w d1 { yes, force it positive }
negx.w d0
@LMul1:
tst.w d2 { is v negative ? }
bpl @LMul2
neg.w d3 { yes, force it positive ... }
negx.w d2
not.w (sp) { ... and modify flag word }
@LMul2:
ext.l d0 { u.h <> 0 ? }
beq @LMul3
mulu.w d3,d0 { r = v.l * u.h }
@LMul3:
tst.w d2 { v.h <> 0 ? }
beq @LMul4
mulu.w d1,d2 { r += v.h * u.l }
add.w d2,d0
@LMul4:
swap d0
clr.w d0
mulu.w d3,d1 { r += v.l * u.l }
add.l d1,d0
move.l a1,d3
move.l a0,d2
tst.w (sp)+ { should the result be negated ? }
bpl @LMul5 { no, just return }
neg.l d0 { else r = -r }
@LMul5:
rts
end;
Procedure Long2Single;Assembler;
{--------------------------------------------}
{ Low-level routine to convert a longint }
{ to a single floating point value. }
{ On entry: d0 = longint value to convert. }
{ On Exit: }
{ d0 = single IEEE value }
{ Registers destroyed: d0,d1 }
{ stack space used and restored: 8 bytes }
{--------------------------------------------}
Asm
XDEF LONG2SINGLE
movem.l d2-d5,-(sp) { save registers to make norm_sf happy}
move.l d0,d4 { prepare result mantissa }
move.w #BIAS4+32-8,d0 { radix point after 32 bits }
move.l d4,d2 { set sign flag }
bge @l2slabel1 { nonnegative }
neg.l d4 { take absolute value }
@l2slabel1:
swap d2 { follow SINGLE_NORM conventions }
clr.w d1 { set rounding = 0 }
jmp SINGLE_NORM
end;
Procedure LongDiv; Assembler;
{--------------------------------------------}
{ Low-level routine to do signed long }
{ division. }
{ On entry: d0/d1 operation to perform }
{ On Exit: }
{ d0 = quotient }
{ d1 = remainder }
{ Registers destroyed: d0,d1,d6 }
{ stack space used and restored: 10 bytes }
{--------------------------------------------}
asm
XDEF LONGDIV
cmp.b #2,Test68000 { can we use divs ? }
blt @continue
tst.l d1
beq @zerodiv2
move.l d1,d6
clr.l d1 { clr }
tst.l d0 { check sign of d0 }
bpl @posdiv
move.l #$ffffffff,d1{ sign extend into d1 }
@posdiv:
divsl.l d6,d1:d0
rts
@continue:
move.l d2,a0 { save registers }
move.l d3,a1
move.l d4,-(sp) { divisor = d1 = d4 }
move.l d5,-(sp) { divident = d0 = d5 }
move.l d1,d4 { save divisor }
move.l d0,d5 { save dividend }
clr.w -(sp) { sign flag }
clr.l d0 { prepare result }
move.l d4,d2 { get divisor }
beq @zerodiv { divisor = 0 ? }
bpl @LDiv1 { divisor < 0 ? }
neg.l d2 { negate it }
not.w (sp) { remember sign }
@LDiv1:
move.l d5,d1 { get dividend }
bpl @LDiv2 { dividend < 0 ? }
neg.l d1 { negate it }
not.w (sp) { remember sign }
@LDiv2:
{;== case 1) divident < divisor}
cmp.l d2,d1 { is divident smaller then divisor ? }
bcs @LDiv7 { yes, return immediately }
{;== case 2) divisor has <= 16 significant bits}
move.l d4,d6 { put divisor in d6 register }
lsr.l #8,d6 { rotate into low word }
lsr.l #8,d6
tst.l d6
bne @LDiv3 { divisor has only 16 bits }
move.w d1,d3 { save dividend }
clr.w d1 { divide dvd.h by dvs }
swap d1
beq @LDiv4 { (no division necessary if dividend zero)}
divu d2,d1
@LDiv4:
move.w d1,d0 { save quotient.h }
swap d0
move.w d3,d1 { (d0.h = remainder of prev divu) }
divu d2,d1 { divide dvd.l by dvs }
move.w d1,d0 { save quotient.l }
clr.w d1 { get remainder }
swap d1
bra @LDiv7 { and return }
{;== case 3) divisor > 16 bits (corollary is dividend > 16 bits, see case 1)}
@LDiv3:
moveq.l #31,d3 { loop count }
@LDiv5:
add.l d1,d1 { shift divident ... }
addx.l d0,d0 { ... into d0 }
cmp.l d2,d0 { compare with divisor }
bcs @LDiv6
sub.l d2,d0 { big enough, subtract }
addq.w #1,d1 { and note bit into result }
@LDiv6:
dbra d3,@LDiv5
exg d0,d1 { put quotient and remainder in their registers}
@LDiv7:
tst.l d5 { must the remainder be corrected ? }
bpl @LDiv8
neg.l d1 { yes, apply sign }
{ the following line would be correct if modulus is defined as in algebra}
{; add.l sp@(6),d1 ; algebraic correction: modulus can only be >= 0}
@LDiv8:
tst.w (sp)+ { result should be negative ? }
bpl @LDiv9
neg.l d0 { yes, negate it }
@LDiv9:
move.l a1,d3
move.l a0,d2
move.l (sp)+,d5
move.l (sp)+,d4
rts { en exit : remainder = d1, quotient = d0 }
@zerodiv:
move.l a1,d3 { restore stack... }
move.l a0,d2
move.w (sp)+,d1 { remove sign word }
move.l (sp)+,d5
move.l (sp)+,d4
@zerodiv2:
move.l #200,d0
jsr HALT_ERROR { RunError(200) }
rts { this should never occur... }
end;
Procedure LongMod;Assembler;
{ see longdiv for info on calling convention }
asm
XDEF LONGMOD
jsr LONGDIV
move.l d1,d0 { return the remainder in d0 }
rts
end;
{
$Log: lowmath.inc,v $
Revision 1.3 1998/07/01 14:28:32 carl
* LONGDIV bugfixed with signed and modulo
* LONGDIV bugfix when divisor is less then 16 bits
Revision 1.1.1.1 1998/03/25 11:18:44 root
* Restored version
Revision 1.5 1998/01/26 12:01:47 michael
+ Added log at the end
Working file: rtl/m68k/lowmath.inc
description:
----------------------------
revision 1.4
date: 1998/01/05 00:33:30; author: carl; state: Exp; lines: +144 -156
* Several minor bugfixes
----------------------------
revision 1.3
date: 1997/12/14 19:03:36; author: carl; state: Exp; lines: +11 -12
+ uses now correct register conventions
----------------------------
revision 1.2
date: 1997/12/01 12:37:20; author: michael; state: Exp; lines: +14 -0
+ added copyright reference in header.
----------------------------
revision 1.1
date: 1997/11/27 13:55:47; author: carl; state: Exp;
Internal RTL math functions for m68k.
=============================================================================
}